Abstract

We study the kinematic properties of the ambient ionized ISM and ionized gas outflows in a large and representative sample of local luminous and ultraluminous infrared galaxies (U/LIRGs) (58 systems, 75 galaxies), on the basis of integral field spectroscopy (IFS)-based high S/N integrated spectra at galactic and sub-galactic, i.e. star forming (SF) clumps, scales. Ambient ionized gas. The velocity dispersion of the ionized ISM in U/LIRGs (<sigma> ~ 70 kms-1) is larger than in lower luminosity local star forming galaxies (<sigma> ~ 25 kms-1). While for isolated disc LIRGs star formation appears to sustain turbulence, gravitational energy release associated to interactions and mergers plays an important role driving sigma in the U/LIRG range. We also find that the impact of an AGN in ULIRGs is strong, increasing sigma by a factor 1.5 on average. The observed weak dependency of sigma with SFR surface density for local U/LIRGs is in very good agreement with that measured in some high-z samples. Ionized outflows. The presence of ionized gas outflows in U/LIRGs seems universal based on the detection of a broad, usually blueshifted, Halpha line. AGNs in U/LIRGs are able to generate faster (x2) and more massive (x1.4) ionized gas outflows than pure starbursts. The derived ionized mass loading factors are in general below one, with only a few AGNs above this limit. Only a small fraction of the ionized material from low mass LIRGs (log(Mdyn/Msun) < 10.4) could reach the intergalactic medium, with more massive galaxies retaining the gas. The observed average outflow properties in U/LIRGs are similar to high-z galaxies of comparable SFR. In the bright SF clumps found in LIRGs, ionized gas outflows appear to be very common. For a given SFR surface density, outflows in LIRG clumps would be about one to two orders of magnitude less energetic than those launched by clumps in high-z SF galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.