Abstract

ABSTRA C T We have investigated the ionization structure of the post-shock regions of magnetic cataclysmic variables, using an analytic density and temperature structure model in which effects caused by bremsstrahlung and cyclotron cooling are considered. We find that in the majority of the shock-heated region where H- and He-like lines of the heavy elements are emitted, the collisional-ionization and corona-condition approximations are justified. We have calculated the line emissivity and ionization profiles for iron as a function of height within the post-shock flow. For low-mass white dwarfs, line emission takes place near the shock. For high-mass white dwarfs, most of the line emission takes place in regions well below the shock and hence it is less sensitive to the shock temperature. Thus, the line ratios are useful to determine the white dwarf masses for the low-mass white dwarfs, but the method is less reliable when the white dwarfs are massive. Line spectra can, however, be used to map the hydrodynamic structure of the post-shock accretion flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.