Abstract

pKa values of amino acid side chains of ribonuclease T1 have been determined from the pH dependence of 13C and 15N resonances. It was possible to derive pKa values of single protonation or deprotonation sites of carboxylate and imidazole groups. Deviations from pKa values of free amino acids could be interpreted with electrostatic interactions of corresponding side chains with the protein environment. In particular, the interaction between H27 and E82 led to an increase of the H27 pKa and a decrease of the E82 pKa. The pKa of E28 at the C-terminal end of the alpha-helix was increased because of the dipolar character of the alpha-helix. D76 did not titrate in the investigated pH range of about 2-9. From the chemical shift value this buried side chain seems to be protonated. The pKa values of side chains in the active site deviate from a normal behaviour. The lower pKa value of E58 may be interpreted with the close proximity of this side chain with positively charged H40 and R77. A novel two-dimensional 1H(13Cdelta)13Cgamma correlation experiment was developed to observe the pH dependence of the chemical shifts of the Cgamma resonances of histidine residues. From the inspection of the Cgamma chemical shift-pH profiles it was possible to determine the predominant tautomeric form for the histidine residues at higher pH values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call