Abstract

Phosphoinositides are found in low concentration in cellular membranes but perform numerous functions such as signaling, membrane trafficking, protein recruitment and modulation of protein activity. Spatiotemporal regulation by enzymes that phosphorylate and dephosphorylate the inositol ring results in the production of seven distinct and functionally diverse derivatives. Ionization properties of the phosphorylated headgroups of anionic lipids have been shown to impact how they interact with proteins and lipids in the membrane. While the ionization properties of the three bis and one tris phosphorylated forms have been studied in physiologically relevant model membranes, that of the monophosphorylated forms (i.e., phosphatidylinositol-3-phosphate (PI3P), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-5-phosphate (PI5P)) has received less attention. Here, we used 31P MAS NMR to determine the charge of 5mol% of the monophosphorylated derivatives in pure dioleoylphosphatidylcholine (DOPC) and DOPC/dioleoylphosphatidylethanolamine (DOPE) bilayers as a function of pH. We find that PI3P, PI4P and PI5P each have unique pKa2 values in a DOPC bilayer, and each is reduced in DOPC/DOPE model membranes through the interaction of their headgroups with DOPE according to the electrostatic-hydrogen bond switch model. In this study, using model membranes mimicking the plasma membrane (inner leaflet), Golgi, nuclear membrane, and endosome (outer leaflet), we show that PI3P, PI4P or PI5P maximize their charge at neutral pH. Our results shed light on the electrostatics of the monophosphorylated headgroups of PI3P, PI4P, and PI5P and form the basis of their intracellular functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call