Abstract

We reported an ionization potential (IP) dependent air exposure effect on the MoO3/organic interface energy level alignment by carrying out in situ ultraviolet photoelectron spectroscopy and synchrotron light based X-ray photoelectron spectroscopy investigations. The electronic structures at MoO3/organic interfaces comprising various π-conjugated small organic molecules with different IP on MoO3 substrate have been systematically investigated. For the molecules with low IP, MoO3/organic interface electronic structures remained almost unchanged after air exposure. In contrast, for the molecules with high IP, the highest occupied molecular orbital (HOMO) leading edge (or hole injection barrier) increases gradually with the increasing molecule IP after air exposure. For the MoO3/copper-hexadecafluorophthalocyanine (F16CuPc, IP: ∼6.58eV) interface, air exposure can induce a significant downward shift of the HOMO level as large as ∼0.80eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call