Abstract

Radiative cooling by metals in shocked gas mediates the formation of ionization front instabilities in the galaxy today that are responsible for a variety of phenomena in the interstellar medium, from the morphologies of nebulae to triggered star formation in molecular clouds. An important question in early reionization and chemical enrichment of the intergalactic medium is whether such instabilities arose in the H II regions of the first stars and primeval galaxies, which were devoid of metals. We present three-dimensional numerical simulations that reveal both shadow and thin-shell instabilities readily formed in primordial gas. We find that the hard UV spectra of Population III stars broadened primordial ionization fronts, causing H2 formation capable of inciting violent thin-shell instabilities in D-type fronts, even in the presence of intense Lyman-Werner flux. The high postfront gas temperatures associated with He ionization sustained and exacerbated shadow instabilities, unaided by molecular hydrogen cooling. Our models indicate that metals eclipsed H2 cooling in I-front instabilities at modest concentrations, from 1 × 10−3 to 1 × 10−2 Z☉. We conclude that ionization front instabilities were prominent in the H II regions of the first stars and galaxies, influencing the escape of ionizing radiation and metals into the early universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.