Abstract

We extend the Hamiltonian method of the full-core plus correlation (FCPC) by minimizing the expectation value to calculate the non-relativistic energies and the wave functions of 1s22s states for the lithium-like systems from Z = 41 to 50. The mass-polarization and the relativistic corrections including the kinetic-energy correction, the Darwin term, the electron—electron contact term, and the orbit—orbit interaction are calculated perturbatively as first-order correction. The contribution from quantum electrodynamic (QED) is also explored by using the effective nuclear charge formula. The ionization potential and term energies of the ground states 1s22s are derived and compared with other theoretical calculation results. It is shown that the FCPC methods are also effective for theoretical calculation of the ionic structure for high nuclear ion of lithium-like systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.