Abstract
The aim of this paper is to study a radial response model as a method, to correct output factor results gathered with ionization chambers of different size and shape in cone collimated RT fields. An enhanced version of a non-parametric super-resolution deconvolution method able to model a radial response function of a small cylinder symmetric ionization chamber is described and demonstrated. The radial response of four ionization chambers with different geometry and radius are estimated using 6 MV photon beam in water at the isocentre plane. Finally the validity of the estimates is tested by applying the response functions to the output factor measurements of 4–20 mm conical collimators. The enhanced method is demonstrated by obtaining the response function characteristics with a spatial uncertainty smaller than 0.1 mm when the distance from chamber axis is larger than 0.5 mm. In all studied ionization chambers, a significant local response maximum is found close to the air cavity boundary. The agreement between the output factor results of different chambers is promising, the largest difference (max—min) in output factor is 4% obtained for the smallest 4 mm cone size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physics in Medicine & Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.