Abstract
It is widely accepted that an understanding of the detailed structure of charged particle tracks is essential for interpreting the mechanistic consequences of energy deposition by high linear energy transfer (LET) radiation. The spatial relationship of events along the path of a charged particle, including excitation, ionization, and charge-transfer, govern subsequent chemical, biochemical, and biological reactions that can lead to adverse biologic effects. The determination of spatial patterns of ionization and excitation relies on a broad range of cross-section data relating the interactions of charged particles to the molecular constituents of the absorbing medium. It is important that these data be absolute in magnitude, comprehensive in scope, and reliable if accurate assessment of track structure parameters is to be achieved. Great strides have been made in the development of this database, understanding the underlying theory, and developing analytic models, particularly for interactions involving electrons and protons with atoms and molecules. The database is less comprehensive for interactions involving heavier charged particles, especially those that carry bound electrons, and for interactions in condensed phase media. Although there has been considerable progress in understanding the physical mechanisms for interactions involving fast heavy ions and atomic targets during the past few years, we still lack sufficient understanding to confidently predict cross-sections for these ions with biologically relevant material. In addition, little is known of the interaction cross-sections for heavy charged particles as they near the end of their track, i.e., for low velocity ions where collision theory is less well developed and where the particle's net charge fluctuates owing to electron capture and loss processes. This presentation focuses on the current status of ionization and charge-transfer data. Compilations, reviews, Internet sources, theoretical models, and recent data applicable to track structure calculations are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.