Abstract

Relative triple differential cross section for the coplanar asymmetric (e, 2e) reaction in argon have been measured at 1.5 KeV incident energy and 40 eV ejected electron energy in several kinematics. Depending on the scattering angle, ϑa, the chosen kinematics select either ionising collisions belonging to the Bethe ridge (ϑa=9.2°) or processes in the intermediate region between the pure dipolar and binary regimes. The more relevant finding is the presence of a minimum in the recoil lobe, almost opposite to the direction of the momentum transfer. This feature is qualitatively explained by a first Born model, which describes the ejected electron by a Coulomb wave-function. This result suggests that in the investigated kinematics the interaction of the slow ejected electron with the residual ion is the dominant effect beyond the first order electron-electron interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call