Abstract
Single-ion tranfer free energies [Formula: see text] and entropies [Formula: see text] of some electrolytes from water to 1, 2, and 4m aqueous NaNO3 solvents have been determined at 25 °C using the widely used tetraphenylarsonium tetraphenylborate (Ph4AsBPh4) reference electrolyte assumption, after due modification for this solvent system. The required [Formula: see text] and [Formula: see text] values of Ph4AsPi, KBPh4, KPi, AgPi, PbPi2, Ag2CrO4, and AgCl where Pi = picrate, were determined by measuring solubilities at 15–35 °C of the solutes except AgCl, the values of which were determined from emf measurements. Analysis of [Formula: see text] and [Formula: see text] values of the ions as well as their respective true interaction effects, [Formula: see text] and [Formula: see text] as obtained after correcting for their cavity effects [Formula: see text] and [Formula: see text] estimated by the scaled particle theory (SPT) and Born-type electrostatic effects, [Formula: see text] and [Formula: see text] computed by simple Born equation, reveals that the behaviour of the ions in this ionic cosolvent system is chiefly guided by one or several effects of ion–ion–solvent, Born and cavity forming interactions. Moreover, a rational explanation has been offered to explain the observed mirror-image entropie behaviour of simple cations and anions in light of Kundu etal.'s four-steps transfer process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.