Abstract

We have employed a novel capillary electrophoresis (CE) approach recently developed in our laboratory, termed ion-interaction–capillary zone electrophoresis (II–CZE), to the resolution of a mixture of 27 synthetic cationic proteomic peptide standards. These peptides were comprised of three groups of nine peptides (with net charges of +1, +2 and +3 for all nine peptides within a group), the hydrophobicity of the nine peptides within a group varying only subtly between adjacent peptides. This bidimensional CE approach achieved excellent resolution of the peptides with high peak capacity by combining the powerful CZE mechanism located in the background electrolyte (BGE) with an hydrophobicity-based mechanism also located in the BGE, the latter consisting of high concentrations (up to 0.4 M) of aqueous perfluorinated acids (trifluoroacetic acid, pentafluoropropionic acid and heptafluorobutyric acid). Thus, concomitant with a CZE separation of the three differently charged groups of peptides, there is an hydrophobically-mediated separation of the peptides within these groups effected through interaction of the hydrophobic anions of the perfluorinated acids with hydrophobic amino acid side-chains in the peptides. This methodology is dramatically different from other CE methods that have used complexing agents such as micelles or cyclodextrins in MEKC. Overall, the results presented here demonstrate the value of CE as a peptide separative tool in its own right, including its use for proteomic applications, and not merely as a complementary technique to reversed-phase high-performance liquid chromatography (RP-HPLC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call