Abstract

Several approaches have recently been shown for self-assembled biomimetic composite films, aiming at combinations of high toughness, strength, and stiffness. However, it remains challenging to achieve high toughness using simple processes especially for bulk materials. We demonstrate that ionically interacting cationic native nanofibrillated cellulose (C-NFC) and anionic nanoclay, i.e. montmorillonite (MTM), allow local self-assemblies by a simple centrifugation process to achieve 3D bulk materials. The composite with MTM/C-NFC of 63/37 w/w has a high compressive strain to failure of 37% with distinct plastic deformation behaviour, a high work to fracture of 23.1 MJ m-3, and a relatively high compression strength of 76 MPa. Unlike the conventionally used sequential deposition methods to achieve well-defined layers for the oppositely charged units as limited to films, the present one-step method allows quick formation of bulk materials and leads to local self-assemblies, however, having a considerable amount of nanovoids and defects between them. We suggest that the nanovoids and defects promote the plastic deformation and toughness. Considering the simple preparation method and bio-based origin of NFC, we expect that the present tough bulk nanocomposites in compression have potential in applications for sustainable and environmentally friendly materials in construction and transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.