Abstract

Ionic conductivity and transport properties of polyvinylidenefluoride–co-hexafluoropropylene– montmorillonite intercalated nanocomposite electrolytes based on ionic liquid 1-butyl-3-methylimidazolium bromide have been studied for various concentrations of montmorillonite clay. Ionic conductivity of the order of 10−3 S cm−1 at room temperature with thermal stability up to about 235 °C has been obtained for the electrolyte system. The electrolyte system has superior properties at 5 wt% of clay loading with highly amorphous morphology as seen from selected area electron diffraction micrograph. Scanning electron microscope studies show that the electrolyte system has highly porous morphology and the ionic liquid is trapped in the pores. Dielectric properties of the electrolyte system have been studied to investigate the relaxation processes occurring in the system. Variation of real part of dielectric permittivity with frequency shows two relaxation processes occurring in the system, slow at low frequency and fast at high frequency. Kohlrausch exponential parameter has been calculated from modulus formalism, and the values show that the distribution of conductivity relaxation times becomes narrower with increasing clay loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.