Abstract
Ionic transport behaviors of silver chloride (AgCl) have been revealed with impedance spectra measurement under high pressures up to 20.4 GPa. AgCl always presented ionic conducting under experimental pressures, but electronic conduction can coexist with ionic conduction within the pressure range from 6.7 to 9.3 GPa. The ionic conductivity of AgCl decreases by three orders of magnitude under compression, indicating that Ag+ ion migrations are suppressed by high pressure. A parameter, fW, was defined as the starting frequency at which Ag+ ions begin to show obvious long-distance diffusion in AgCl. fW showed a similar trend with the ionic conductivity under high pressures, indicating that the speed of Ag+ ion diffusion slows down as the pressure increases. Unlike AgI, Ag+ ion diffusion in AgCl is controlled by the indirect-interstitial mechanism. Due to stronger ionic bonds and larger lattice deformation, Ag+ ion diffusion in the rigid Cl− lattice is more difficult than in the I− lattice under high pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.