Abstract

ABSTRACTThin films (0.3μm to 11.2 μm) of Polyethylene Oxide (PEO) with molecular weights from 6 × 103 to 4 × 105 were prepared from aqueous solutions by a spin technique as AI-PEO-AI structures, or as AI-PEO-Si structures. Dielectric measurements (capacitance and loss angle) were carried out in a frequency range 3 mHz ≤ f ≤ 1 MHz in atmospheres of different relative humidity (0% r.h. to 75% r.h.) and at different temperatures (293 K to 323 K). The nominal dielectric permittivity exhibits a remarkable dependence on the sample thickness and the relative humidity. We find a true volume polarization in the high frequency range and a thermally activated relaxation process in the low frequency range, whose time constant is shifted towards high frequencies with increasing r.h.. It is considered that due to the absorbed dipolar water molecules chemical bonds within the sample are broken and quasi-free ions are generated. These ions move through the sample to the electrode interfaces and form an ionic space charge. We assume that at the PEO-Al interface an oxide layer is formed, which is impermeable for these ions. The transit times and the drift velocities of the ions are almost independent of the electric field strength in the low-field limit. Therefore we conclude that the movement of the ions can be described by a multiwell potential model, where the transition probability between neighbored wells is thermally activated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.