Abstract

The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.