Abstract

Using the ionic self-assembly (ISA) strategy to combine Eu-containing polyoxometalates (Eu-POMs) and organic molecules mainly through noncovalent electrostatic interactions can protect Eu-POMs from solvent quenching of luminescence and enhance their processability. For this reason, a cationic polyelectrolyte, branched polyethyleneimine (PEI), and a Eu-POM, Na9(EuW10O36)·32H2O (EuW10), were used here to construct luminescence-enhanced spherical aggregates with diameters ranging from 50 to 200 nm. At a fixed concentration of EuW10, the phase behavior and luminescence properties of the mixture could be modulated by the PEI concentration. Such ISA-induced aggregates could effectively shield water molecules and result in better photophysical properties. Compared to bare EuW10, the absolute quantum yield and lifetime of luminescence for aggregates increased 10 and 5 times, respectively. Meanwhile, the sensitivity of the EuW10 coordination structure to the environment made it possible for obtained aggregates being used to detect either copper cations or permanganate anions due to their strong specific quenching effects to luminescence. Such a new type of luminescent soft material not only provided a reference for exploring the luminescence enhancement mechanism of lanthanide through self-assembly in aqueous solution but also exhibited potential in detection by luminescence analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.