Abstract

Single channel currents through Ca2+-activated K+ channels of bovine chromaffin cells were measured to determine the effects of small ions on permeation through the channel. The channel selects strongly for K+ over Na+ and Cs+, and Rb+ carries a smaller current through the channel than K+. Tetraethylammonium ion (TEA+) blocks channel currents when applied to either side of the membrane; it is effective at lower concentrations when applied externally. Millimolar concentrations of internal Na+ reduce the average current through the channel and produce large fluctuations (flicker) in the open channel currents. This flickery block is analyzed by a new method, amplitude distribution analysis, which can measure block and unblock rates in the microsecond time range even though individual blocking events are not time-resolved by the recording system. The analysis shows that the rate of block by Na+ is very voltage dependent, but the unblock rate is voltage independent. These results can be explained easily by supposing that current flow through the channel is diffusion limited, a hypothesis consistent with the large magnitude of the single channel current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.