Abstract

Ionic mobility (μ), ionic drift velocity (v_d), and dielectric measurements of new Ag^+ ion conducting glassy systems: x[0.75AgI: 0.25AgC1]: (1 - x)[Ag_2O: V_2O_5], where 0:1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by the melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: ’quenched [0.75AgI: 0.25AgC1] mixed system/solid solution’ has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems indicated that the composition 0.8[0.75AgI: 0.25AgC1]: 0.2[Ag_2O: V_2O_5] shows the highest conductivity (σ ~ 9.0 × 10^(-3) S/cm) at room temperature. Some other basic ion transport parameters, viz. the mobile ion concentration (n) and ion transference number (t_(ion)), have also been characterized using different experimental techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.