Abstract

Positive chronotropy induced by beta1-adrenergic stimulation is achieved by multiple interactions of ion channels and transporters in sinoatrial node pacemaker cells (SANs). To investigate the ionic mechanisms, we updated our SAN model developed in 2003 and incorporated the beta1-adrenergic signaling cascade developed by Kuzumoto et al. (2007). Since the slow component of the delayed rectifier K+ current (IKs) is one of the major targets of the beta1-adrenergic cascade, we developed a guinea pig model with a large IKs. The new model provided a good representation of the experimental characteristics of SANs. A comparison of individual current during diastole recorded before and after beta1-adrenergic stimulation clearly showed the negative shift of the L-type Ca2+ current (ICaL) takeoff potential, enlargement of the sustained inward current (I st), and the hyperpolarization-activated nonselective cation current (Iha) played major roles in increasing the firing frequency. Deactivation of IKs during diastole scarcely contributed to the time-dependent decrease in membrane K+ conductance, which was the major mechanism for slow diastolic depolarization, as indicated by calculating the instantaneous equilibrium potential (lead potential). This was because the activation of IKs during the preceding action potential was negligibly small. However, IKs was important in counterbalancing the increase in ICaL and the Na+/Ca2+ exchange current (INaCa), which otherwise compromised the positive chronotropic effect by elongating the action potential duration. Enhanced Ca2+ release from the sarcoplasmic reticulum failed to induce an obvious chronotropic effect in our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.