Abstract

The ionic mechanisms of the depolarizing and the hyperpolarizing quinine receptor potentials in the ciliate Paramecium caudatum were examined by using a behavioral mutant strain. The depolarizing receptor potential was induced by stimulating the anterior end of the specimen, and the hyperpolarizing receptor potential by stimulating the posterior end. The amplitude of both the depolarizing and the hyperpolarizing receptor potentials increased linearly with logarithmic increase in quinine concentration applied. Threshold concentration for inducing the depolarizing receptor potential was lower than that for the hyperpolarizing one. The peak level of the depolarizing receptor potential shifted towards the depolarizing direction with increasing external Ca2+ concentration while that of the hyperpolarizing receptor potential shifted in the depolarizing direction with increasing external K+ concentration. Under voltage-clamp conditions, the specimen produced an inward current in response to anterior stimulation, and an outward current in response to posterior stimulation. Both the peak inward and the peak outward currents showed a linear relationship with membrane potential. Current-voltage relationships of the receptor currents indicated conductance increase during the application of quinine. The depolarizing quinine receptor potential appears to be produced by an activation of Ca2+ channels, and the hyperpolarizing quinine receptor potential by an activation of K+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.