Abstract

In recent years, the complex and heterogeneous structure of ionic liquids has been demonstrated; however, the consequences on the dynamics have remained elusive. Here, we use femtosecond IR spectroscopy to elucidate the local structural dynamics in protic alkylammonium-based ionic liquids. The structural relaxation after an ultrafast temperature increase, following vibrational excitation and subsequent relaxation of the N-D (or N-H) stretching vibration, is found to vary substantially between the ionic and hydrophobic subdomains. The dynamics in the ionic domains are virtually unaffected by the alkyl chain length and is, therefore, decoupled from viscosity. Equilibration within the hydrophobic subdomains, as evident from the dynamics of the C-H stretching vibration, is faster than that in the ionic domains and shows a remarkably low thermal activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.