Abstract
The development of polymer membranes with tailored micro-morphology and wettability is a demand in the areas of filtration, sensors, and tissue engineering, among others. The thermoplastic copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), is one of the most widely used polymers for these applications due to its good mechanical and thermal properties, biocompatibility and low density. Although the control of the PVDF-HFP morphology is a complicated task, the introduction of ionic liquids (ILs) in the PVDF-HFP matrix opens new perspectives in this area. This work consists of a systematic study of three different protic ionic liquids ([dema][TfO], [MIm][NTf2] and [MIm][Cl]) in the control of PVDF-HFP membranes properties. Different preparation conditions are also analyzed. These results demonstrate how several parameters such as morphology, water absorption capacity and mechanical properties vary depending on the production methodology employed and on the choice of incorporated IL. Pores of different sizes, spherulites and compact structures have been obtained, as well as hydrophilic and highly hydrophobic structures. These results show that ILs play a key role in the optimization of polymer properties and given the large number of available ILs, open up new possibilities for the development of polymer membranes suitable for applications where specific morphologies are desirable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.