Abstract

Antibacterial hydrogel dressings play an important role in wound healing and infection treatment. The majority of hydrogels are obtained through chemical cross-linking and complex synthesis or processing. Copper ions (Cu2+) have been involved in sterilization; however, their direct use may lead to high local concentrations and heavy metal toxic side effects. Herein, dopamine (DA) was polymerized in situ along a polyvinyl alcohol (PVA) chain and chelated copper ions (Cu2+) to form a mixture. Ionic liquid (IL) choline-glycolate (CGLY) was added to the mixture to form an ionic gel. CGLY promotes gel formation through intermolecular hydrogen bonds with the polymer chains and avoids the use of toxic chemical crosslinking agents. Meanwhile, CGLY can also promote the release of Cu2+ and generate hydrogel free radicals (˙OH) in the wound through chemodynamic therapy to kill drug-resistant bacteria. In addition, the excellent transdermal property of CGLY enables the released Cu2+ to stimulate cell migration and accelerate wound healing. The gel exhibits favorable biocompatibility and its use has been demonstrated in skin infection therapy of mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.