Abstract

Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs' physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are organophosphate > carboxylate > sulfonate. All selected ILs outperformed a commercial ashless antiwear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the IL's oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribo-film, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an antiwear tribo-film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.