Abstract
In this study, hydroxyapatite (HAP) with abundant surface hydroxyl and large pores was used as the ionic liquid ([DMCA]X) immobilization carrier, where the surface hydroxyl groups of HAP were used as binding sites and the n-halogen-acids were used as bonding agents. The supported ionic liquid catalysts [DMCA]X-n-HAP were characterized by XRD, TEM, TG and FTIR, proving that the ionic liquids were successfully bonded onto the surface of HAP. The utilization of hydroxyl sites on the surface of HAP was as high as 90%. The above catalysts were used to catalyze the cycloaddition reaction of CO2 and propylene oxide (PO), and the yield and selectivity of propylene carbonate (PC) were up to 98.7% and 100%, respectively. The length effect of the bonding agents on the catalyst performance was also studied, and found that n-chlorine-butyric acid was the most suitable chemical for channel structure of HAP and spatial freedom of ionic liquid. In addition, the effects of halogen anion and hydroxyl hydrogen on the performance of the reaction were also studied. Importantly, autocatalysis was discovered in the reaction. Finally, the reaction intermediates and reaction mechanism of CO2 cycloaddition were investigated by in situ-DRIFTS, revealing that ring-open of PO is rate-determining step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.