Abstract

AbstractTwo oxalatoborate ionic liquids (ILs), which are commonly utilized as electrolyte additives that form a protective layer on the cathode surface, are investigated for the first time as electrode additives. Cathodes based on LiNi0.5Mn1.5O4 (LNMO) containing 3 wt % ILs, i. e., “IL‐enriched cathodes”, exhibit capacity values above 120 mAh/g with high Coulombic efficiencies throughout cycling over 200 times. A cathode without ILs also exhibits a capacity of 119 mAh/g but its Coulombic efficiency becomes low and unstable after 109 cycles. In addition, when 0.3 M ILs are added to conventional carbonate‐based electrolytes, the battery cycle life improves but there is a reduction in the capacity probably due to low ionic conductivity of the electrolyte mixtures. Post‐mortem analyses of electrodes retrieved from cycled cells highlight less electrolyte decomposition and less cathode corrosion, enabled by using the IL as the additive in LNMO, which are confirmed by a particle shape with smooth surface identical to the fresh cathode. The study demonstrates that oxalatoborate ILs can be used as the electrode additive, and this provides a new concept for cathode formulations for high performance batteries with a small amount of ILs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.