Abstract

In this work, an ionic liquid-dispersive liquid–liquid microextraction (IL-DLLME) procedure was developed for the extraction of a group of pesticides (carbendazim/benomyl, thiabendazole, fuberidazole, carbaryl and triazophos) and some of their key metabolites in soils (2-aminobenzimidazole, metabolite of carbendazim and 1-naphthol, metabolite of carbaryl) from aqueous soil extracts, using high performance liquid chromatography (HPLC) with fluorescence detection (FD). Analytes were previously extracted from four soils with different physicochemical properties (forestal, ornamental, garden and lapilli soils) by ultrasound-assisted extraction (USE). The IL 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIm][PF 6]) and methanol (MeOH) were used as extraction and dispersion solvent, respectively, for the DLLME procedure. Factors affecting IL-DLLME (sample pH, IL amount, volume of dispersion solvent and sodium chloride percentage) were optimized by means of an experimental design, obtaining the most favorable results when using 117.5 mg of IL and 418 μL of MeOH to extract the compounds from the aqueous soil extracts at pH 5.20 containing 30% (w/v) NaCl. Calibration of the USE–IL-DLLME–HPLC–FD method was carried out for every type of soil and accuracy and precision studies were developed at two levels of concentration, finding that no significant differences existed between real and spiked concentrations (Student's t test). LODs achieved were in the low ng/g range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.