Abstract

To maximize the size and structural advantages of nanomaterials in electrooxidation of ethanol, we herein report the synthesis of core–shell gold (Au)@Palladium (Pd) nanoparticles smaller than 3 nm in an ionic liquid, which combines the advantages of ionic liquids in preparing fine metal nanoparticles with the benefits of core–shell nanostructures. This synthetic strategy relies on the use of an ionic liquid (1-(2′-aminoethyl)-3-methyl-imidazolum tetrafluoroborate) as a stabilizer to produce Au particles with an average size of ca. 2.41 nm, which are then served as seeds for the formation of tiny core–shell Au@Pd nanoparticles with different Au/Pd molar ratios. The strong electronic coupling between Au core and Pd shell endows the Pd shell with an electronic structure favorable for the ethanol oxidation reaction. In specific, the ionic liquid-derived core–shell Au@Pd nanoparticles at an Au/Pd molar ratio of 1/1 exhibit the highest mass- and area-based activities, approximately 11 times than those of commercial Pd/C catalyst for ethanol electrooxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.