Abstract
The sputtering of gold foil onto 1-n-butyl-3-methylimidazolium tetrafluoroborate, hexafluorophosphate, bis(trifluoromethylsulfonyl)amide, or tris(fluoro)tris(perfluoroethane)phosphate ionic liquids (ILs) generates stable and well-dispersed gold nanoparticles (NPs) of 3−5 nm under conditions of 40 mA, 335 V, and 2 Pa Ar work pressure. The size and size distribution of these Au nanoparticles depends on various experimental parameters, particularly the surface composition of the IL and less so the surface tension and viscosity. Under the experimental conditions used here, both nucleation and NP growth seem to occur on the IL surface and the NP size changes with the changes in the IL surface composition, especially with the increase of the fluorinated content. Moreover, the NP size is independent of sputtering time but does depend on the discharge current. When higher discharge currents are used, more gold atoms hit the ionic liquid surface per unit time, changing the kinetics of particle growth on the surfac...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.