Abstract

Effective pretreatment of lignocellulosic biomass is vital to its bioconversion to a usable liquid fuel. A growing body of work has focused on using room temperature ionic liquids (RTILs) to pretreat lignocellulose for subsequent fermentation. However, little is known about the physicochemical parameters of RTILs that promote effective pretreatment. In this work we examine the relationship between the Kamlet–Taft α, β, and π* solvent polarity parameters of different RTILs ([Emim][OAc], [Bmim][OAc], and [Bmim][MeSO4]) and effective pretreatment of lignocellulosic biomass. We find the β parameter is an excellent predictor of pretreatment efficacy. Acetate containing RTILs (β > 1.0) remove >32% of lignin from maple wood flour and significantly reduce cellulose crystallinity, resulting in >65% glucose yields after 12 h cellulase hydrolysis. Pretreatment in [Bmim][MeSO4] (β = 0.60) results in the removal of only 19% of the wood flour's lignin with no decrease in crystallinity, and no improvement in sugar yield over untreated wood flour. The addition of water and the dilution of the acetate anion with the methyl sulfate anion decrease the β value and subsequently have a negative impact on lignin extraction, cellulose crystallinity, and sugar yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.