Abstract
Abstract A graphene–TiO2 hybrid was synthesized by a solvothermal microwave-assisted method in a mixture of two green solvents: water and an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]). Graphene oxide (GO) could be easily reduced under microwave irradiation without any additional reducing reagent. Titanium (IV) isopropoxide was used as a starting material for the growth of TiO2 nanoparticles on the graphene sheets accompanied by the reduction of GO. The structure and morphology of the as-prepared hybrid were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and thermogravimetric analysis. The graphene–TiO2 hybrid had a high surface area and exhibited high photocatalytic degradation of methylene blue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.