Abstract

Excellent mass transport capability is indispensable to building a high-power lithium-ion battery (LIB) system. Nanomaterials with enhanced electrochemical properties have been used for next-generation high-performance LIBs. However, due to the high surface free energy, nanomaterials tend to form agglomeration. The resulting insufficient mass transport channels limit the high rate performance of nanomaterials. Here, we increase the electrolyte accessibility of nanomaterials through a facile ionic liquid (IL) mediation method. The fluidity and affinity enable the IL to infiltrate into the interstitials of nanomaterial aggregations under capillary force, enhancing the electrochemically active contact area and ensuring rapid mass transport. As a proof of concept, IL-mediated LiFePO4 electrodes delivered extraordinary rate performance (112 and 95 mAh g-1 at 200 and 300 C, respectively). In terms of simplicity, the IL mediation can be used as a general strategy to achieve an ultrahigh rate for LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.