Abstract

Nickel nanoparticles (NPs) well-dispersed in the aqueous phase were conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of the functionalized ionic liquid 1-(3-aminopropyl)-2,3-dimethylimidazolium bromide. UV/Vis spectroscopy, elemental analysis, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) show the presence of a weak interaction of the functionalized ionic liquid with Ni(II) and Ni(0) complexes. The face-centered cubic structure of the Ni(0) NPs was confirmed by X-ray diffraction (XRD) characterization. Transmission electron microscopy (TEM) images reveal that smaller Ni(0) particles of approximately 6-7 nm average diameter assemble to give larger, blackberry-shaped particles with an average diameter of around 35 nm. The Ni NPs were employed as highly efficient catalysts for the selective hydrogenation of C=C double bonds in the aqueous phase under mild reaction conditions (40-90 degrees C at 1.0-3.0 MPa), and the Ni(0) nanocatalysts in the aqueous phase are stable enough to be reused at least seven times without significant loss of catalytic activity during subsequent reuse cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.