Abstract

Magnesium – ion batteries have the potential for high energy density but require new types of electrolytes for practical application. Ionic liquid (IL) electrolytes offer the opportunity for increased safety and broader voltage windows relative to traditional electrolytes. We present here a systematic study of both the conductivity and oxidative stability of hybrid electrolytes consisting of eleven ILs mixed with dipropylene glycol dimethylether (DPGDME) or acetonitrile (ACN) cosolvents and magnesium bis(trifluoromethylsulfonyl)imide (Mg(TFSI)2). Our study finds a correlation of higher conductivity of ILs with unsaturated rings and short carbon chain lengths, but by contrast, these ILs also exhibited lower oxidation voltage limits. For the cosolvent additive, although glymes have a demonstrated capability of coordination with Mg2+ ions, a decrease in conductivity compared to acetonitrile hybrid electrolytes was observed. When cycled within the appropriate voltage range, the IL-hybrid electrolytes that show the highest conductivity provide the best cathode magnesiation current densities and lowest polarization as demonstrated with a Mg0.15MnO2 and Mg0.07V2O5 cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.