Abstract

Over the past decade, perovskite photovoltaics have approached other currently available technologies and proven to be the most prospective type of solar cells. Although the many‐sided research in this very active field has generated consistent results with regard to their undisputed consistently increasing power conversion efficiency, it also produced several rather contradictory opinions. Among other important details, debate surrounding their proneness to surface degradation and poor mechanical robustness, as well as the environmental footprint of this materials class, remains a moot point. The application of ionic liquids appears as one of the potential remedies to some of these challenges due to their high conductivity, the opportunities for chemical “tuning” of the structure, and relatively lower environmental footprint. This article provides an overview, classification, and applications of ionic liquids in perovskite solar cells. We summarize the use and role of ionic liquids as versatile additives, solvents, and modifiers in perovskite precursor solution, in charge transport layer, and in interfacial and stability engineering. Finally, challenges and the future prospects for the design and/or selection of ionic liquids with a specific profile that meets the requirements for next‐generation highly efficient and stable perovskite solar cells are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.