Abstract

Meta-alkyloxyguanidinium salt-based ionic liquid crystals 3–5, 7 and 9 were synthesised and investigated with respect to the influence of meta-substitution of the cation on the mesomorphic properties. As expected, bending of the mesogenic cation in ion pairs with simple counterions (3–5) decreased melting points irrespective of the anion, but clearing points were influenced by the anion radii. SmA mesophases were formed in all cases. The mesophase formation in guanidinium sulphonates 7 and 9, however, depended not only on meta-substitution but also on the anion, the respective difference between alkyl chain lengths in cation and anion and the number of alkyloxy substituents on the sulphonate, for which a change of mesophase type from smectic to columnar phases was observed. For two derivatives, 7e and 9b, room temperature SmA and Colh mesophases could be obtained that were stable for a temperature range of 91 K and 55 K, respectively. A packing model for both smectic and columnar phases based on powder XRD data was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.