Abstract

Group separations of lanthanides from minor actinides is required in the currently considered scenarios for closing of the nuclear fuel cycle. TALSPEAK is a well-known and historically first process suggested for such separations. The process is based on competitive complexation of trivalent f-group ions by an aminopolycarboxylate (such as the base of diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid, DTPA) in an aqueous buffer and a dialkylphosphate (such as the base of bis(2-ethylhexyl)phosphoric acid, HDEHP) in an organic phase. Unfortunately, this method exhibits excessive sensitivity to pH and composition of the aqueous feed. In this study, we ″reinvent″ TALSPEAK, retaining the competitive ion binding but changing considerably the chemical implementation of the underlying general principles. The DTPA moiety is integrated into a functionalized ionic liquid (IL) that is immiscible with an organic phase containing dialkylphosphate ligands. Choline and betainium bistriflimides double as IL diluents and sy...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.