Abstract

Ionic liquids (ILs) are considered as appealing alternative electrolytes for application in rechargeable batteries, including next-generation sodium-ion batteries, because of their safe and eco-friendly nature, resulting from their extremely low volatility. In this work, two groups of advanced pyrrolidinium-based IL electrolytes are concerned, made by mixing sodium bis(fluorosulfonyl)imide (NaFSI) or sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) salts salts with N-methyl- N-propylpyrrolidinium bis(fluorosulfonyl)imide (Pyr13FSI), N-butyl- N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr14FSI), and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr13FSI). The characterization of eight different electrolytes, including single anion electrolytes and binary anion mixtures, in terms of thermal properties, density, viscosity, and conductivity, as well as electrochemical stability window and cycling performance in room-temperature sodium cells, is reported here. Among all of the blends, those containing Pyr14FSI outperform the others in terms of cell performance enabling the layered P2-Na0.6Ni0.22Al0.11Mn0.66O2 cathode to deliver about 140 mAh g-1 for more than 200 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.