Abstract
Surfactant-mediated coacervates are termed as the new age microreactors for their ability to spontaneously sequester the molecules with varied polarities and functionalities. Efforts to emulate this applicability of coacervates through synthetic control of surfactant structures are finding success; however, there is little understanding of how to translate these changes into tailor-made properties. Herein, we designed 3-methyl-1-(octyloxycarbonylmethyl)imidazolium bromide (C8EMeImBr), an ester-functionalized ionic liquid-based surfactant, which shows better surface active properties than the nonfunctionalized and conventional cationic surfactant and forms complex coacervates over the broad range of concentration with sodium salicylate (NaSal). Mono- and divalent cations as well as ionic strength, viscosity, and time-dependent stability of the coacervates had also been addressed in order to study whether these coacervates could work as microreactors to encapsulate various molecules. The anionic charged complex coacervates with sponge morphology and honey comb-like interior show good efficiency to sequester cationic dyes from water because of electrostatic and hydrophobic interactions and good encapsulation efficiency for curcumin owing to their high surface area. Results suggest that ionic liquid-based coacervates studied here could be exploited as a novel low-cost, effective, and environmentally benign alternative to sequester dyes from the contaminated water and their recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.