Abstract

With the assistance of the ionic liquid trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentylphosphinate), we have successfully synthesized short nanorods, quasi-nanospheres and faceted CdS nanoparticles via thermal decomposition of cadmium diethyldithiocarbamate complexes. It was shown that the shape, size and crystallinity of the products could be controlled through delicate regulation of the reaction temperature, monomer concentration, reaction time, and ionic liquid ratio. We found that higher temperature was beneficial to the good crystallinity, while the lower temperature and higher monomer concentration were in favor of anisotropic structures. The used ionic liquid contributed to the formation of hexagonal phase CdS nanocrystals, and its ratio played an important role in determining the ultimate morphology of products. The possible mechanism for the formation CdS nanocrystals was proposed. Furthermore, the as-prepared CdS samples demonstrated a highly photocatalytic activity in the degradation of methyl orange under visible light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call