Abstract

Direct analysis of samples, regardless their origin, is desirable although for the majority of cases unfeasible on account of the complexity of the sample matrix, inadequate concentration of the target analytes, or even incompatibility with the detector. In these cases, a sample pretreatment step is required for interference removal and analytes separation/preconcentration. Despite valuable advances developed in separation science, the traditional solvent extraction is widely used for samples preparation. Main drawback of the solvent extraction is the requirement of large amounts of high-purity solvents that are expensive and toxic and result in the production of hazardous waste. Therefore, the search for new solvent is a key trend in solvent extraction evolution. In this sense, ionic liquid, which is ionic media resulting from the combination of organic cations and various anions, has attracted much attention taking into account their special features like: low-vapor pressure, high viscosity, dual natural polarity, good thermal stability and a wide range of miscibility with water and other organic solvents, hence many environmental and safety problems associated with organic solvents are avoided. As a result of their unique chemical and physical properties, the ionic liquid has aroused increasing interest for their promising role as alternative medium for classical solvent extraction [1-7] and organic synthesis [8-10]. Recently, ionic liquids were rapidly developed as environment-friendly acceptor phase for various microextraction to sample preparation in analytical chemistry such as liquid phase microextraction, single drop liquid phase microextraction, solid phase microextraction, dispersive liquid phase microextraction and cold induced aggregation microextraction. The microextraction with ionic liquid often exhibited better extraction efficiency and enrichment factor than that with conventional solvent extractions. Among the microextractions, dispersive liquid phase microextraction is very rapid and effective. Since the ionic liquid is dispersed completely into aqueous phase and the analytes will more easily migrate into the ionic liquid phase because of the much large contact area, the procedure for dispersive liquid phase microextraction may be complete within several minutes. In recent years, the ionic liquid extraction coupled with different analytical technology has widely been applied to determination of ultra trace analytes in water or other samples such as high performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS) for organic compounds, and flame atomic absorption spectrometry (AAS) and graphite furnace atomic absorption spectrometry (ETAAS) for metal ions. In general, the extractions with

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.