Abstract

The novelties of solid−liquid phase transfer catalyzed synthesis of p-nitrodiphenyl ether from p-nitrochlorobenzene and potassium phenoxide were studied in detail with ionic liquids as phase transfer catalysts among others. Tetradecyl(trihexyl)phosphonium bromide was found to be the best catalyst leading to 100% selectivity toward the desired product p-nitrodiphenyl ether. Ionic liquids offer excellent conversions and selectivity, stability at high temperatures, and reusability in this reaction. A mathematical model was developed to study the kinetics of the reaction and used to extract both the rate constant and ion-exchange equilibrium constant. The contribution of the uncatalyzed reaction was also considered in this model. The activation energy and Gibb’s free energy for a combined ion exchange were also calculated. Microwave irradiation was also employed as an effective alternative to conventional heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call