Abstract

Two different ionic liquids comprising the tetrabutylphosphonium cation ([P4444]) paired with the strongly coordinating anions 6-aminocaproate ([6-AC]) or taurinate ([tau]) were prepared and employed in an aqueous/organic liquid bilayer system to generate nanoscale gold by Au(OH)4- photoreduction. Generally, as the concentration of ionic liquid in the organic phase was increased, the resulting quasi-spherical gold nanoparticles were smaller in size and presented less aggregation, leading to marked increases in the catalytic efficiency for 4-nitrophenol reduction using borohydride. The diffusion of the ionic liquids across the liquid/liquid interface was also investigated, revealing partition coefficients of 6.0 and 7.6 for [P4444][6-AC] and [P4444][tau], respectively. Control studies elucidated that biphasic interfacial reduction was necessary to achieve stable nanoparticles possessing high catalytic activity. When the ionic liquid anion was instead replaced by the weakly coordinating bis(trifluoromethylsulfonyl)imide ([Tf2N]), photoreduction of Au(OH)4- led to holey, wavy gold nanowires instead of spherical nanoparticles, indicating the dramatic morphological control exerted by the coordination strength of the ionic liquid anion. This strategy is straightforward and simple and opens up a number of intriguing avenues for controllably preparing plasmonic colloids for a range of applications from catalysis to optical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.