Abstract

Halogen-bridged transition-metal chain compounds have recently emerged as an important class of low-dimensional electronic materials with strong electron-lattice and electron-electron interactions. We introduce a many-body model for such materials which is quantitatively successful for highly valence-localized (strong charge-density-wave) members of the class, e.g., PtCl with various ligand structures. The model introduces nearest-neighbor Coulomb attraction and metal ion-ion electrostatic repulsion directly rather than through a linear Peierls-Hubbard Hamiltonian. These interactions have the effects of (i) modifying the on-site orbital energies, (ii) generating an effective anharmonic intrasite electron-lattice coupling (leading to the formation of a charge-density wave even if the intersite electron-lattice coupling is weak), and (iii) acting as an effective anharmonic elastic force between neighboring metal and halogen atoms. The stoichiometric ground state and various defect states (polaron, bipolaron, kink, exciton) are studied within this framework by computing their optical absorption, Raman, and infrared spectra: The results agree well with available experimental data. Buckling of Cl atoms out of the chain axis in certain PtCl compounds is predicted to be important in order to obtain the observed Raman frequencies for electron polarons and bipolarons. Finally, a strong ``template'' effect is discussed by comparing two PtCl materials with different ligands and counterions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.