Abstract
Ionic electroactive polymers (IEAPs) are a category of intelligent soft materials exhibiting large displacement under electric excitation, based on inner ion or solvent transport. Due to their unique advantages such as flexibility, low driving voltage, large bending displacement and aquatic-environment adaptability, IEAPs have been documented as very promising actuators for the applications in bionic robots. This review presents an analysis to the current research status of IEAPs exploited in bionic robots. According to the specific bionic parts, those robots are divided into four classes: imitation of fins, limbs, joints and trunks. Their dimension, weight, voltage amplitude, frequency and maximum speed were summarized to show the optimum design range. The results show that the approach velocity of the current robots were higher (> 35 mm·s-1) when the robot weighted 60 g–180 g and the body was 90 mm–130 mm long. For voltage from 1 V–3 V and frequencies from 0.7 Hz–1.2 Hz, the speed was relatively higher (> 35 mm·s-1). To some extent, the maximum speed decreases when the area of the IEAP material used in bionic robot increases. For underwater circumstances, IEAP materials are most suitable for designing bionic robots swimming with Body and/or Caudal Fin (BCF). This review provides important guidance for the design of IEAP bionic robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.