Abstract

In the past decades, ion conductive polymers and elastomers have drawn worldwide attention for their advanced functions in batteries, electroactive soft robotics, and sensors. Stretchable ionic elastomers with dispersed soft ionic moieties such as ionic liquids have gained remarkable attention as soft sensors, in applications such as the wearable devices that are often called electric skins. A considerable amount of research has been done on ionic-elastomer-based strain, pressure, and shear sensors; however, to the best of our knowledge, this research has not yet been reviewed. In this review, we summarize the materials and performance properties of engineered ionic elastomer actuators and sensors. First, we review three classes of ionic elastomer actuators—namely, ionic polymer metal composites, ionic conducting polymers, and ionic polymer/carbon nanocomposites—and provide perspectives for future actuators, such as adaptive four-dimensional (4D) printed systems and ionic liquid crystal elastomers (iLCEs). Next, we review the state of the art of ionic elastomeric strain and pressure sensors. We also discuss future wearable strain sensors for biomechanical applications and sports performance tracking. Finally, we present the preliminary results of iLCE sensors based on flexoelectric signals and their amplification by integrating them with organic electrochemical transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call