Abstract

The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR) allows it to be cured with dif- ferent agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH), known also as hydrotalcite (HT), on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR com- pound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR) studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA) of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions - one occurring at low temperature is associated to the Tg of elas- tomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.