Abstract

Ionic current through a 3 nm in diameter nanopore has been investigated using molecular dynamics. Results indicate that the ionic current increases linearly as the electrolyte concentration increases from 0.4 to 0.9 M, beyond which the ionic current increases at a slower rate. In contradiction to the expectation that higher surface charge density will lead to more ions in the nanopore, and therefore, higher ionic current, the ionic current shows an increase-decrease profile as the surface charge density increases. These unusual observations are attributed to the fact that ions close to the wall experience large viscous force, leading to low mobility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.